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Let K be the set of kernels

with:

(i) X(P.· ) E C2~, even. non-negative.

(ii) J~~X(P,u)du=2n,pEAx'

(iii) There exists an accumulation point Po E !f! U 1-iX), oo! of A x
such that, for every (5 E (0, n),

1 X(P,II)du=o(I).
• (, i ul 'T

P --> Po'

For IE L~~ (real or complex valued) and X E K. pEA,. we define

I .~

I p (/ x) = --I I(x II) X(p. II) duo
2n. T

Let IE C2~ real valued. f~ ~I(u) dll > O. Then if I'.;; 0 on 71. 71 \ we have

1/,,( g .;: x)I "" IpU: x).
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x E I-n. 711. (I)
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for every complex valued g E L~" with I g(u)1 < I, u E P. Clearly this bound
preserving property is also sufficient for f to be non-negative (for each
pEA). In the present paper we deal with the following related conditions:

for all p E Ax'

x E [ - n:, n: ].
(2)

It appears to us that (2), for a large variety of kernels in K, is also sufficient
for [E C2,,' J"-,,[(u)du > 0, to be non-negative. Note that this conclusion is
trivial if strict inequality is required in (2).

We shall establish this conjecture-occasionally under further restrictions
for [-for a number of kernels, among them the kernels of Poisson, Fejer, de
la Vallee Poussin and Weierstrass. In the last section we treat the kernel

ApI = (0,1), Po = 1.
(3 )

We have not been able, however, to derive the general condition (if there is
any) to be imposed on [ or X E K to make our conjecture valid. It should be
pointed out that the desired conclusion fails to hold for suitably chosen [
and X E K with "small" supports.

2

Let bk(P) be the Fourier coefficients of X E K,

(4 )
r-,

such that bo(P) == 1, bk(P) = b k(P) E iF! for k E \1. For j E we define

and for m > 1

THEOREM 1. Let X E K such that

(i) X(p,·) E C;", p E Ax,

(ii) Lk~IILl2bk 1(P)I=O((I-b1(p))),p-->po,

(iii) Ll 2 bk _ I (P) = 0(1 - blIP)), P-->Po' k E iI',.

Then if (2) holds [or [E C2~ with .I·"-~[(u) du > 0 we have ['? 0 in [-n:, n:j.



336 RUSCHEWEYH AND WIRTHS

Proof Without loss of generality we assume Ip}f, Xn) = 0 for a sequence
of pairwise disjoint Pn E Ax' n EN, with Pn --+ Po and corresponding numbers
x n (otherwise the conclusion is trivial for the approximate identity X). Hence
Ip/eiUj(u), xn) = 0, n E iN. If

I

j{u) ~ \' GkeikU ,
k --:t

then since X E C;"

CJ:.

Re IpJf, xn) = Go + 2 \' bk(Pn) Re(GkeikXn) = 0
k=]

and

= GOb'(Pn) + \' (bk_,(Pn)+bk+,(pn))Re(Gkeik'n)=O.
k 1

This implies

fX.-,

Go(b](Pn)-I)+ \' {L1 2 bk ,(pn))Re(akeikXn)=O
k 1

for n EN. Using (ii), (iii) of the assumption and the fact G k --> 0, k--> 00, we
obtain

II --> 00,

which gives the contradiction

I·n
0= Go = - I j(u) du > O.

271 ._"

For Fejer's kernel

( I (Sin«n + 1)(U/2)))2 2 \n, ( k)F n u)=-- = I + 1--- cosku,
, n + 1. sin(u/2) k' n + 1.

AI = N, Po = 00, and for Poisson's kernel

1 _ p 2

P(p u) = = I + 2 \ ' p' cos ku,
, I + p2

- 2p cos U k 1
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A p = (0, 1), Po = 1, the assumptions of Theorem 1 are fulfilled and our
conjecture is therefore proved in these cases.

3

For Korovkin-type kernels X E K, i.e., those with

we have for kEN

I - b (P)
_----=2--'--- = 4 + (1)
l-bl(P) 0,

P -+ Po,

and Theorem I is not applicable. For these kernels we do not have a general
method to establish our conjecture. We can prove it, however, for those
Korovkin-type kernels which admit an infinite trigonometric asymptotic
expansion of Io(j, x) and real-analytic f

Let K' denote the class of those X E K for which

P -+ Po

holds for mE IN. We make use of the following Lemma which is easily
deduced along the lines in [3, pp. 73-751 and can also be extracted from the
results in [21.

LEMMA. Let X E K' and fE C~~, f(J)(xo) = 0, j = 0, I, .. ., 2m - 2. Then

for P -+ Po

THEOREM 2. Let X E K' and fE C::~ real ana~vtic with J~,J(u) du > O.
Then the conditions (2) imply f) 0 on [-71",71" J.

Proof We show that every zero of f is of even multiplicity which
implies the assertion. In fact, if f(i)(x o) = 0 for 0 <.j <. 2m- 2 and
f(2m-l)(xo)"* 0, a combination of (5) and (2) gives for P -+ Po

1 2m!f(2m-1) (xo) + f l2m )(xo) + 0(1)1 <. If l2m
)(xo) + 0(1)1

which implies the contradiction p2m-ll(xo) = O.
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It follows from the results in [21 that the de la Vallee Poussin kernel

(n!)" u "n
V(n,u)= (2n)! (2cos:d nE

is in K '. The same is true for the Weierstrass kernel

'"f

W(p, u) = 1 + 2 ~ e- l1k
' cos ku,

k 1

as an iterated application of I'Hospital's rule to

p--'O+

shows.

d 2m - 2b-m-I(P)
d 2m b_ m(P)

4

p--'O+ ,mEN

In this concluding section we establish our conjecture for the kernel

1 - p2 ( I _ p2 ) 2
P2(P, u) = ,---oc,----

1 + p- 1 + p- - 2p cos U

f (. 1- p' )= I + 2 \' ---, k + I. {/ cos ku,
k-\ 1 +p'

A 112 = (0, 1), Po = I, which does not belong to K' but is of Korovkin-type. It
is known 11, pp. 205-2101 that for real or complex valued functions h E C2~

we have

z = pe".

where H denotes the harmonic function in Iz I < I with the continuous
boundary values h. Now if F denotes the analytic function in z I < I with
F(O) E IF< and Re F harmonic with the boundary values f it is clear that the
harmonic function H with the boundary values eiUf(u) is given by

(
F(Z)) ( 1)2H(z) = zF(z) + -z- + z - z F(O)
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such that condition (2) reads in this particular case

1(l-lzI2)(Z2F' + F' ) + 2z(F + t)1

~ 1(1 -lzI 2)(zF' + zF' ) + (1 + Izn(F + F)!

for z < I. A rearrangement leads to the equivalent inequality

33lJ

(1-lznlF'(z)I~2IReF(z)I, Iz 1 < I. (6)

Equation (6) is well known to hold for analytic F with F(O) > 0, Re F(z) > 0
in Iz I < I. It remains to show the sufficiency of (6) for Re F(z) ~ 0 if F is
analytic in Izl < I, F(O) > O. Assume Re F(zo) = 0 for a certain IZol < 1.
Then it follows from (6)

which is impossible.
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