On a Property of Singular Integrals with Even Positive Kernels

St. Ruscheweyh

Mathematisches Institut der Universität Würzburg, Am Hubland 8700 Würzburg, West Germany

AND

K.-J. WIRTHS

Technische Universität Braunschweig Pockelsstr. 14 3300 Braunschweig, West Germany

Communicated by P. L. Butzer

Received September 9, 1980

1

Let K be the set of kernels

$$\chi(\rho, u): A_{\gamma} \times [-\pi, \pi] \to \mathbb{R} \qquad (A_{\gamma} \subset \mathbb{R})$$

with:

- (i) $\chi(\rho, \cdot) \in C_{2\pi}$, even, non-negative,
- (ii) $\int_{-\pi}^{\pi} \chi(\rho, u) du = 2\pi, \rho \in A_{\chi}.$
- (iii) There exists an accumulation point $\rho_0 \in \mathbb{R} \cup \{-\infty, \infty\}$ of A_{χ} such that, for every $\delta \in (0, \pi)$,

$$\int_{|\delta| |u| \leq \pi} \chi(\rho, u) \, du = o(1), \qquad \rho \to \rho_0.$$

For $f \in L^{1}_{2\pi}$ (real or complex valued) and $\chi \in \mathbf{K}$, $\rho \in A_{\chi}$, we define

$$I_{\rho}(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-u) \chi(\rho,u) du.$$

Let $f \in C_{2\pi}$ real valued, $\int_{-\pi}^{\pi} f(u) du > 0$. Then if $f \ge 0$ on $|-\pi, \pi|$ we have

$$|I_{\rho}(g \cdot f, x)| \le I_{\rho}(f, x), \qquad x \in [-\pi, \pi],$$
(1)

0021-9045/81/120334-06\$02.00/0

Copyright © 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. for every complex valued $g \in L^1_{2\pi}$ with $|g(u)| \le 1$, $u \in \mathbb{R}$. Clearly this bound preserving property is also sufficient for f to be non-negative (for each $\rho \in A_{\chi}$). In the present paper we deal with the following related conditions:

$$|I_{\rho}(e^{iu}f(u),x)| \leqslant |I_{\rho}(f,x)|, \qquad x \in [-\pi,\pi].$$
for all $\rho \in A_{\gamma}$.

It appears to us that (2), for a large variety of kernels in **K**, is also sufficient for $f \in C_{2\pi}$, $\int_{-\pi}^{\pi} f(u) du > 0$, to be non-negative. Note that this conclusion is trivial if strict inequality is required in (2).

We shall establish this conjecture—occasionally under further restrictions for f—for a number of kernels, among them the kernels of Poisson, Fejér, de la Valleé Poussin and Weierstrass. In the last section we treat the kernel

$$P_{2}(\rho, u) = \frac{1 - \rho^{2}}{1 + \rho^{2}} \left(\frac{1 - \rho^{2}}{1 + \rho^{2} - 2\rho \cos u} \right)^{2},$$

$$A_{P_{2}} = (0, 1), \qquad \rho_{0} = 1.$$
(3)

We have not been able, however, to derive the general condition (if there is any) to be imposed on f or $\chi \in \mathbf{K}$ to make our conjecture valid. It should be pointed out that the desired conclusion fails to hold for suitably chosen f and $\chi \in \mathbf{K}$ with "small" supports.

2

Let $b_k(\rho)$ be the Fourier coefficients of $\chi \in \mathbf{K}$,

$$\chi(\rho, u) \sim \sum_{k=-\infty}^{\infty} b_k(\rho) e^{iku}$$
(4)

such that $b_0(\rho) \equiv 1$, $b_k(\rho) = b_{-k}(\rho) \in \mathbb{R}$ for $k \in \mathbb{N}$. For $j \in \mathbb{Z}$ we define

$$\Delta_2 b_j(\rho) = b_j(\rho) - 2b_{j+1}(\rho) + b_{j+2}(\rho)$$

and for m > 1

$$\Delta_{2m}b_j = \Delta_{2m-2}b_j - 2\Delta_{2m-2}b_{j+1} + \Delta_{2m-2}b_{j+2}.$$

THEOREM 1. Let $\chi \in \mathbf{K}$ such that

- (i) $\chi(\rho,\cdot) \in C^2_{2\pi}, \rho \in A_{\chi}$,
- (ii) $\sum_{k=1}^{\infty} |\Delta_2 b_{k-1}(\rho)| = O((1-b_1(\rho))), \rho \to \rho_0$
- (iii) $\Delta_2 b_{k-1}(\rho) = o(1-b_1(\rho)), \rho \rightarrow \rho_0, k \in \mathbb{N}.$

Then if (2) holds for $f \in C_{2\pi}$ with $\int_{-\pi}^{\pi} f(u) du > 0$ we have $f \geqslant 0$ in $[-\pi, \pi]$.

Proof. Without loss of generality we assume $I_{\rho_n}(f,x_n)=0$ for a sequence of pairwise disjoint $\rho_n\in A_\chi$, $n\in\mathbb{N}$, with $\rho_n\to\rho_0$ and corresponding numbers x_n (otherwise the conclusion is trivial for the approximate identity χ). Hence $I_{\rho_n}(e^{iu}f(u),x_n)=0,\ n\in\mathbb{N}$. If

$$f(u) \sim \sum_{k=-\infty}^{\infty} a_k e^{iku}, \qquad a_k = \overline{a_{-k}}.$$

then since $\chi \in C^2_{2\pi}$

Re
$$I_{\rho_n}(f, x_n) = a_0 + 2 \sum_{k=1}^{\infty} b_k(\rho_n) \operatorname{Re}(a_k e^{ikx_n}) = 0$$

and

$$\begin{aligned} \operatorname{Re}[e^{-ix_n}I_{\rho_n}(e^{iu}f(u),x_n)] \\ &= a_0b_1(\rho_n) + \sum_{k=1}^{\infty} (b_{k-1}(\rho_n) + b_{k+1}(\rho_n)) \operatorname{Re}(a_k e^{ikx_n}) = 0. \end{aligned}$$

This implies

$$a_0(b_1(\rho_n) - 1) + \sum_{k=1}^{\infty} (\Delta_2 b_{k-1}(\rho_n)) \operatorname{Re}(a_k e^{ikx_n}) = 0$$

for $n \in \mathbb{N}$. Using (ii), (iii) of the assumption and the fact $a_k \to 0$, $k \to \infty$, we obtain

$$\sum_{k=1}^{\infty} \frac{\Delta_2 b_{k-1}(\rho_n)}{1 - b_1(\rho_n)} \cdot \operatorname{Re}(a_k e^{ikx_n}) = o(1), \qquad n \to \infty.$$

which gives the contradiction

$$0 = a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \, du > 0.$$

For Fejér's kernel

$$F(n,u) = \frac{1}{n+1} \left(\frac{\sin((n+1)(u/2))}{\sin(u/2)} \right)^2 = 1 + 2 \sum_{k=1}^n \left(1 - \frac{k}{n+1} \right) \cos ku,$$

 $A_F = \mathbb{N}$, $\rho_0 = \infty$, and for Poisson's kernel

$$P(\rho, u) = \frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos u} = 1 + 2 \sum_{k=1}^{\infty} \rho^k \cos ku,$$

 $A_p = (0, 1), \ \rho_0 = 1$, the assumptions of Theorem 1 are fulfilled and our conjecture is therefore proved in these cases.

3

For Korovkin-type kernels $\chi \in \mathbf{K}$, i.e., those with

$$\frac{1 - b_2(\rho)}{1 - b_1(\rho)} = 4 + o(1), \qquad \rho \to \rho_0,$$

we have for $k \in \mathbb{N}$

$$\frac{\Delta_2 b_{k-1}(\rho)}{b_1(\rho) - 1} = 2 + o(1), \qquad \rho \to \rho_0,$$

and Theorem 1 is not applicable. For these kernels we do not have a general method to establish our conjecture. We can prove it, however, for those Korovkin-type kernels which admit an infinite trigonometric asymptotic expansion of $I_a(f, x)$ and real-analytic f.

Let K' denote the class of those $\chi \in K$ for which

$$\Delta_{2m+2}(b_{-m-1}(\rho)) = o(\Delta_{2m}(b_{-m}(\rho)), \qquad \rho \to \rho_0$$

holds for $m \in \mathbb{N}$. We make use of the following Lemma which is easily deduced along the lines in [3, pp. 73-75] and can also be extracted from the results in [2].

LEMMA. Let $\chi \in \mathbf{K}'$ and $f \in C_{2\pi}^{2m}$, $f^{(j)}(x_0) = 0$, j = 0, 1, ..., 2m - 2. Then for $\rho \to \rho_0$

$$I_{\rho}(f, x_0) = \frac{(-1)^m}{(2m)!} f^{(2m)}(x_0) \Delta_{2m}(b_{-m}(\rho)) + o(\Delta_{2m}(b_{-m}(\rho))). \tag{5}$$

THEOREM 2. Let $\chi \in \mathbf{K}'$ and $f \in C^{\infty}_{2\pi}$ real analytic with $\int_{-\pi}^{\pi} f(u) du > 0$. Then the conditions (2) imply $f \geqslant 0$ on $[-\pi, \pi]$.

Proof. We show that every zero of f is of even multiplicity which implies the assertion. In fact, if $f^{(i)}(x_0) = 0$ for $0 \le j \le 2m - 2$ and $f^{(2m-1)}(x_0) \ne 0$, a combination of (5) and (2) gives for $\rho \to \rho_0$

$$|2mif^{(2m-1)}(x_0) + f^{(2m)}(x_0) + o(1)| \le |f^{(2m)}(x_0) + o(1)|$$

which implies the contradiction $f^{(2m-1)}(x_0) = 0$.

It follows from the results in |2| that the de la Valleé Poussin kernel

$$V(n, u) = \frac{(n!)^2}{(2n)!} \left(2\cos\frac{u}{2} \right)^{2n}, \qquad n \in \mathbb{N},$$

is in K'. The same is true for the Weierstrass kernel

$$W(\rho, u) = 1 + 2 \sum_{k=1}^{\infty} e^{-\rho k^2} \cos ku, \qquad \rho \to 0 + .$$

as an iterated application of l'Hospital's rule to

$$\frac{\Delta_{2m-2}b_{-m-1}(\rho)}{\Delta_{2m}b_{-m}(\rho)}, \qquad \rho \to 0 + , m \in \mathbb{N}$$

shows.

4

In this concluding section we establish our conjecture for the kernel

$$P_2(\rho, u) = \frac{1 - \rho^2}{1 + \rho^2} \left(\frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos u} \right)^2$$
$$= 1 + 2 \sum_{k=1}^{3} \left(\frac{1 - \rho^2}{1 + \rho^2} k + 1 \right) \rho^k \cos ku,$$

 $A_{p_2} = (0, 1), \, \rho_0 = 1$, which does not belong to **K**' but is of Korovkin-type. It is known [1, pp. 205–210] that for real or complex valued functions $h \in C_{2\pi}$ we have

$$I_{\rho}(h,x) = \frac{1-|z|^2}{1+|z|^2}(zH_z+\bar{z}H_{\bar{z}})+H, \qquad z=\rho e^{ix},$$

where H denotes the harmonic function in |z| < 1 with the continuous boundary values h. Now if F denotes the analytic function in |z| < 1 with $F(0) \in \mathbb{R}$ and $\operatorname{Re} F$ harmonic with the boundary values f it is clear that the harmonic function H with the boundary values $e^{iu}f(u)$ is given by

$$2H(z) = zF(z) + \overline{\left(\frac{F(z)}{z}\right)} + \left(z - \frac{1}{\overline{z}}\right)F(0)$$

such that condition (2) reads in this particular case

$$|(1 - |z|^2)(z^2F' + \overline{F'}) + 2z(F + \overline{F})|$$

$$\leq |(1 - |z|^2)(zF' + \overline{zF'}) + (1 + |z|^2)(F + \overline{F})|$$

for |z| < 1. A rearrangement leads to the equivalent inequality

$$(1-|z|^2)|F'(z)| \le 2|\operatorname{Re} F(z)|, \qquad |z| < 1.$$
 (6)

Equation (6) is well known to hold for analytic F with F(0) > 0, $\operatorname{Re} F(z) > 0$ in |z| < 1. It remains to show the sufficiency of (6) for $\operatorname{Re} F(z) \ge 0$ if F is analytic in |z| < 1, F(0) > 0. Assume $\operatorname{Re} F(z_0) = 0$ for a certain $|z_0| < 1$. Then it follows from (6)

$$\lim_{z \to z_0} (1 - |z|^2) \frac{|F'(z)|}{|F(z) - F(z_0)|} \leqslant 2$$

which is impossible.

REFERENCES

- K. W. BAUER AND ST. RUSCHEWEYH. "Differential Operators for Partial Differential Equations and Function Theoretic Applications," Lecture Notes in Mathematics No. 791, Springer-Verlag, Berlin/New York, 1980.
- G. BLEIMANN, "Über trigonometrische und fraktionierte Taylorformeln und deren Anwendungen in der Approximationstheorie," dissertation. Technische Universität Aachen, 1979.
- P. L. BUTZER AND R. J. NESSEL. "Fourier-Analysis and Approximation," Bd. I. Birkhäuser, Basel, 1971.